Môn 

Dạng lượng giác của số phức

Nội dung bài viết:

1. Kiến thức cần nhớ

2. Một số dạng toán thường gặp

1. Kiến thức cần nhớ

a) Định nghĩa Acgumen của số phức.

thitot.vn

- Điểm \(M \ne O\) biểu diễn số phức \(z = a + bi\left( {a,b \in R} \right)\) thì số đo mỗi góc lượng giác tia đầu là \(Ox\) và tia cuối \(OM\) được gọi là acgumen của số phức \(z\).

- Nếu \(\alpha \) là một acgumen của \(z\) thì \(\alpha + k2\pi \) cũng là một acgumen của \(z\) với mỗi \(k \in Z\).

b) Khái niệm về dạng lượng giác của số phức

- Số phức \(z = a + bi\) là dạng đại số của \(z\).

- Số phức \(z = r\left( {\cos \varphi + i\sin \varphi } \right)\) là dạng lượng giác của \(z\), ở đó:

+ \(r\) là mô đun của số phức.

+ \(\varphi \) là acgumen của số phức.

c) Các phép toán với số phức dạng lượng giác:

Cho hai số phức \({z_1} = {r_1}\left( {\cos {\varphi _1} + i\sin {\varphi _1}} \right),{z_2} = {r_2}\left( {\cos {\varphi _2} + i\sin {\varphi _2}} \right)\). Khi đó:

\(\begin{array}{l}{z_1} \pm {z_2} = {r_1}\left( {\cos {\varphi _1} + i\sin {\varphi _1}} \right) \pm {r_2}\left( {\cos {\varphi _2} + i\sin {\varphi _2}} \right) \\ = \left( {{r_1}\cos {\varphi _1} \pm {r_2}\cos {\varphi _2}} \right) + i\left( {{r_1}\sin {\varphi _1} \pm {r_2}\sin {\varphi _2}} \right)\\{z_1}.{z_2} = {r_1}\left( {\cos {\varphi _1} + i\sin {\varphi _1}} \right).{r_2}\left( {\cos {\varphi _2} + i\sin {\varphi _2}} \right) \\ = {r_1}{r_2}\left[ {\cos \left( {{\varphi _1} + {\varphi _2}} \right) + i\sin \left( {{\varphi _1} + {\varphi _2}} \right)} \right]\\\dfrac{{{z_1}}}{{{z_2}}} = \dfrac{{{r_1}\left( {\cos {\varphi _1} + i\sin {\varphi _1}} \right)}}{{{r_2}\left( {\cos {\varphi _2} + i\sin {\varphi _2}} \right)}} = \dfrac{{{r_1}}}{{{r_2}}}\left[ {\cos \left( {{\varphi _1} - {\varphi _2}} \right) + i\sin \left( {{\varphi _1} - {\varphi _2}} \right)} \right]\end{array}\)

d) Công thức Moivre:

Cho số phức \(z = r\left( {\cos \varphi + i\sin \varphi } \right)\). Khi đó:

\({z^n} = {\left[ {r\left( {\cos \varphi + i\sin \varphi } \right)} \right]^n} = {r^n}\left( {\cos n\varphi + i\sin n\varphi } \right)\)

2. Một số dạng toán thường gặp

Dạng 1: Chuyển số phức từ dạng đại số sang dạng lượng giác.

Cho số phức \(z = a + bi\), viết \(z\) dưới dạng \(z = r\left( {\cos \varphi + i\sin \varphi } \right)\)

Phương pháp:

- Bước 1: Tính \(r = \sqrt {{a^2} + {b^2}} \)

- Bước 2: Tính \(\varphi \) thỏa mãn \(\left\{ \begin{array}{l}\cos \varphi = \dfrac{a}{r}\\\sin \varphi = \dfrac{b}{r}\end{array} \right.\)

Dạng 2: Tính giá trị, rút gọn biểu thức.

Phương pháp:

Sử dụng các phép toán cộng, trừ, nhân, chia số phức, công thức Moivre để tính giá trị và rút gọn các biểu thức.

Bài học liên quan
Số phức và các phép toán cộng, trừ, nhân, chia số phứcPhương trình bậc hai với hệ số thực (căn bậc hai của số phức)Phương pháp giải các bài toán liên quan đến điểm biểu diễn số phức
Thi Tốt
Kết nối với chúng tôiHotline: 0921 560 888Thứ 2 - thứ 6: từ 8h00 - 17h30 Email: support@qsoft.vn
Tải ứng dụng Thi tốt
google playapple store
Đơn vị chủ quản: Công ty TNHH Giải pháp CNTT và TT QSoftGPKD: 0109575870Địa chỉ: Tòa nhà Sông Đà 9, số 2 đường Nguyễn Hoàng, phường Mỹ Đình 2, quận Nam Từ Liêm, Hà Nội
bộ công thương

Chịu trách nhiệm nội dung: Công ty TNHH Giải pháp CNTT và TT QSoftCopyright © 2022 thitot.vn