Môn 

Phương pháp giải các bài toán liên quan đến điểm biểu diễn số phức

Nội dung bài viết:

1. Kiến thức cần nhớ

2. Một số dạng toán thường gặp

1. Kiến thức cần nhớ

Điểm \(M\left( {a;b} \right)\) biểu diễn số phức \(z = a + bi\).

2. Một số dạng toán thường gặp

Dạng 1: Tìm điểm biểu diễn số phức thỏa mãn điều kiện cho trước.

Phương pháp:

Cách 1: Tính số phức \(z\) dựa vào các phép đổi thông thường.

Cách 2:

- Bước 1: Gọi số phức \(z = x + yi\left( {x,y \in R} \right)\) có điểm biểu diễn là \(M\left( {x;y} \right)\).

- Bước 2: Thay \(z = x + yi\) và điều kiện đề bài tìm \(x,y \Rightarrow M\).

Ví dụ: Cho số phức \(z\) thỏa mãn \(w + 2z = i\) biết \(w = 2 - i\). Tìm tọa độ điểm biểu diễn số phức \(z\).

Giải:

Gọi \(z = a + bi\left( {a,b \in R} \right)\) biểu diễn số phức \(z\), ta có:

\(2 - i + 2\left( {a + bi} \right) = i \Leftrightarrow \left( {2 + 2a} \right) + \left( {2b - 2} \right) = 0 \Leftrightarrow \left\{ \begin{array}{l}2 + 2a = 0\\2b - 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = 1\end{array} \right.\)

Vậy \(M\left( { - 1;1} \right)\).

Dạng 2: Tìm tập hợp điểm biểu diễn số phức.

Phương pháp:

- Bước 1: Gọi số phức \(z = x + yi\left( {x,y \in R} \right)\) có điểm biểu diễn là \(M\left( {x;y} \right)\).

- Bước 2: Thay \(z = x + yi\) vào điều kiện đã cho dẫn đến phương trình liên hệ giữa \(x,y\).

- Bước 3: Kết luận:

+) Phương trình đường thẳng: \(Ax + By + C = 0\)

+) Phương trình đường tròn: \({x^2} + {y^2} - 2ax - 2by + c = 0\)

+) Phương trình parabol: \(y = a{x^2} + bx + c\) hoặc \(x = a{y^2} + by + c\)

+) Phương trình elip: \(\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\)

Ví dụ: Tìm tập hợp các điểm $M$ biểu diễn số phức \(z\) thỏa mãn:\(|z - (3 - 4i)| = 2\).

A. Đường tròn tâm $I\left( {3, - 4} \right)$ và bán kính $R = 2$.

B. Đường tròn tâm $I\left( { - 3,4} \right)$ và bán kính $R = 2$.

C. Đường tròn tâm $I\left( {3, - 4} \right)$ và bán kính $R = 1$.

D. Đường tròn tâm $I\left( { - 3,4} \right)$ và bán kính $R = 1$.

Giải:

Giả sử ta có số phức $z = a + bi$ .

Thay vào \(|z - (3 - 4i)| = 2\) có:

\(|a + bi - (3 - 4i)| = 2 \Leftrightarrow |(a - 3) + (b + 4)i| = 2 \)

$\Leftrightarrow \sqrt {{{(a - 3)}^2} + {{(b + 4)}^2}} = 2 \Leftrightarrow {(a - 3)^2} + {(b + 4)^2} = 4$.

Chọn đáp án A

Bài học liên quan
Số phức và các phép toán cộng, trừ, nhân, chia số phứcPhương trình bậc hai với hệ số thực (căn bậc hai của số phức)Phương pháp giải các bài toán tìm min, max liên quan đến số phức
Thi Tốt
Kết nối với chúng tôiHotline: 0921 560 888Thứ 2 - thứ 6: từ 8h00 - 17h30 Email: support@qsoft.vn
Tải ứng dụng Thi tốt
google playapple store
Đơn vị chủ quản: Công ty TNHH Giải pháp CNTT và TT QSoftGPKD: 0109575870Địa chỉ: Tòa nhà Sông Đà 9, số 2 đường Nguyễn Hoàng, phường Mỹ Đình 2, quận Nam Từ Liêm, Hà Nội
bộ công thương

Chịu trách nhiệm nội dung: Công ty TNHH Giải pháp CNTT và TT QSoftCopyright © 2022 thitot.vn