Ví dụ: Tìm tập hợp các điểm $M$ biểu diễn số phức \(z\) thỏa mãn:\(|z - (3 - 4i)| = 2\).
A. Đường tròn tâm $I\left( {3, - 4} \right)$ và bán kính $R = 2$.
B. Đường tròn tâm $I\left( { - 3,4} \right)$ và bán kính $R = 2$.
C. Đường tròn tâm $I\left( {3, - 4} \right)$ và bán kính $R = 1$.
D. Đường tròn tâm $I\left( { - 3,4} \right)$ và bán kính $R = 1$.
Giải:
Giả sử ta có số phức $z = a + bi$ .
Thay vào \(|z - (3 - 4i)| = 2\) có:
\(|a + bi - (3 - 4i)| = 2 \Leftrightarrow |(a - 3) + (b + 4)i| = 2 \)
$\Leftrightarrow \sqrt {{{(a - 3)}^2} + {{(b + 4)}^2}} = 2 \Leftrightarrow {(a - 3)^2} + {(b + 4)^2} = 4$.
Chọn đáp án A